Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.473
Filtrar
1.
Ultrason Sonochem ; 104: 106842, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460472

RESUMO

The rate of pH decline post - mortem and its interaction with temperature influences the final tenderness of meat, and therefore, the manipulation of the rate of pH decline is a strategy of interest in order to obtain consistent high quality meat. Ultrasound is a potential early post - mortem carcass intervention, which may alter the rate of glycolysis based on its ability to alter enzyme activity. In this study, homogenates (prepared from early post-mortem Longissimus thoracis et lumborum muscle) were subjected to different ultrasound intensities (0 %/60 %/100 % amp) and treatment durations (15/ 30 min). The effect of these treatments on the inherent activity of the glycolytic enzymes was investigated using an in vitro glycolytic buffer model system. It was found that ultrasound treatment intensity and duration had a significant interactive effect on the rate of pH decline, and on reducing sugars and lactic acid concentrations, specifically following the 100 % amp ultrasound for 30 min treatment and between 30 and 240 min incubation. No significant differences in pH or metabolites content were observed between treatments after 1440 min of incubation. No effect of ultrasound intensity or treatment duration was observed on the degradation of glycogen. Under the reported conditions of this trial, it can be concluded that the application of ultrasound has limited potential to have an impact on the glycolytic pathways in bovine muscle.


Assuntos
Carne , Músculo Esquelético , Animais , Bovinos , Músculo Esquelético/química , Carne/análise , Ácido Láctico/metabolismo , Glicólise/fisiologia , Misturas Complexas/análise , Misturas Complexas/metabolismo , Concentração de Íons de Hidrogênio
2.
Front Biosci (Landmark Ed) ; 29(3): 99, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38538285

RESUMO

Altered metabolism represents a fundamental difference between cancer cells and normal cells. Cancer cells have a unique ability to reprogram their metabolism by deviating their reliance from primarily oxidative phosphorylation (OXPHOS) to glycolysis, in order to support their survival. This metabolic phenotype is referred to as the "Warburg effect" and is associated with an increase in glucose uptake, and a diversion of glycolytic intermediates to alternative pathways that support anabolic processes. These processes include synthesis of nucleic acids, lipids, and proteins, necessary for the rapidly dividing cancer cells, sustaining their growth, proliferation, and capacity for successful metastasis. Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with the poorest patient outcome due to its high rate of metastasis. TNBC is characterized by elevated glycolysis and in certain instances, low OXPHOS. This metabolic dysregulation is linked to chemotherapeutic resistance in TNBC research models and patient samples. There is more than a single mechanism by which this metabolic switch occurs and here, we review the current knowledge of relevant molecular mechanisms involved in advanced breast cancer metabolism, focusing on TNBC. These mechanisms include the Warburg effect, glycolytic adaptations, microRNA regulation, mitochondrial involvement, mitochondrial calcium signaling, and a more recent player in metabolic regulation, JAK/STAT signaling. In addition, we explore some of the drugs and compounds targeting cancer metabolic reprogramming. Research on these mechanisms is highly promising and could ultimately offer new opportunities for the development of innovative therapies to treat advanced breast cancer characterized by dysregulated metabolism.


Assuntos
Fosforilação Oxidativa , Neoplasias de Mama Triplo Negativas , Humanos , Cálcio/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Glicólise/fisiologia , Transdução de Sinais , Linhagem Celular Tumoral
3.
Semin Cancer Biol ; 100: 17-27, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38494080

RESUMO

Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Glicólise/fisiologia , Glucose/metabolismo , Microambiente Tumoral/genética
4.
Artigo em Alemão | MEDLINE | ID: mdl-38354729

RESUMO

Immunometabolism is a fascinating field of research that investigates the interactions between metabolic processes and the immune response. This intricate connection plays a pivotal role in regulating inflammatory reactions and consequently exerts a significant impact on the course of sepsis. The proinflammatory response during an immune reaction is closely tied to a high energy demand in immune cells. As a result, proinflammatory immune cells rapidly require substantial amounts of energy in the form of ATP, necessitating a fundamental and swift shift in their metabolism, i.e., their means of generating energy. This entails a marked increase in glycolysis within the proinflammatory response, thereby promptly meeting the energy requirements and providing essential metabolic building blocks for the biosynthesis of macromolecules. Alongside glycolysis, there is heightened activity in the pentose phosphate pathway (PPP). The PPP significantly contributes to NADPH production within the cell, thus maintaining redox equilibrium. Elevated PPP activity consequently leads to an increased NADPH level, resulting in enhanced production of reactive oxygen species (ROS) and nitric oxide (NO). While these molecules are crucial for pathogen elimination, an excess can also induce tissue damage. Simultaneously, there are dual interruptions in the citric acid cycle. In the cellular resting state, the citric acid cycle acts as a sort of "universal processor", where metabolic byproducts of glycolysis, fatty acid breakdown, and amino acid degradation are initially transformed into NADH and FADH2, subsequently yielding ATP. While the citric acid cycle and its connected oxidative phosphorylation predominantly generate energy at rest, it becomes downregulated in the proinflammatory phase of sepsis. The two interruptions lead to an accumulation of citrate and succinate within cells, reflecting mitochondrial dysfunction. Additionally, the significantly heightened glycolysis through fermentation yields lactate, a pivotal metabolite for sepsis diagnosis and prognosis. Conversely, cells in an anti-inflammatory state revert to a metabolic profile akin to the resting state: Glycolysis is attenuated, PPP is suppressed, and the citric acid cycle is reactivated. Of particular interest is that not only does the immune reaction influence metabolic pathways, but this connection also operates in reverse. Thus, modulation of metabolic pathways also modulates the immunity of the corresponding cell and thereby the state of the immune system itself. This could potentially serve as an intriguing avenue in sepsis therapy.


Assuntos
Glicólise , Sepse , Humanos , NADP , Glicólise/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Trifosfato de Adenosina
5.
Chem Res Toxicol ; 37(2): 208-211, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38191130

RESUMO

The Cell Counting Kit-8 (CCK-8) cell viability assay, also known as WST-8, is widely recognized for its nontoxic nature, making it suitable for further studies on treated cells. This practice is commonly observed in the field of tissue engineering. While live/dead imaging may not readily reveal macroscopic differences, our investigation has uncovered significant intracellular metabolic changes. Notably, we observed substantial down-regulation of metabolites within the glycolysis and pentose phosphate pathways. These metabolic alterations predominantly affect energy metabolism and may potentially impact the cellular redox environment. In light of these findings, we strongly recommend that researchers exercise caution when using cells treated with CCK-8 in subsequent experiments.


Assuntos
Glicólise , Via de Pentose Fosfato , Via de Pentose Fosfato/fisiologia , Sobrevivência Celular , Glicólise/fisiologia , Metabolismo Energético , Metaboloma
6.
Sci Rep ; 14(1): 1193, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216627

RESUMO

High rates of cardiac fatty acid oxidation during reperfusion of ischemic hearts contribute to contractile dysfunction. This study aimed to investigate whether lysine acetylation affects fatty acid oxidation rates and recovery in post-ischemic hearts. Isolated working hearts from Sprague Dawley rats were perfused with 1.2 mM palmitate and 5 mM glucose and subjected to 30 min of ischemia and 40 min of reperfusion. Cardiac function, fatty acid oxidation, glucose oxidation, and glycolysis rates were compared between pre- and post-ischemic hearts. The acetylation status of enzymes involved in cardiac energy metabolism was assessed in both groups. Reperfusion after ischemia resulted in only a 41% recovery of cardiac work. Fatty acid oxidation and glycolysis rates increased while glucose oxidation rates decreased. The contribution of fatty acid oxidation to ATP production and TCA cycle activity increased from 90 to 93% and from 94.9 to 98.3%, respectively, in post-ischemic hearts. However, the overall acetylation status and acetylation levels of metabolic enzymes did not change in response to ischemia and reperfusion. These findings suggest that acetylation may not contribute to the high rates of fatty acid oxidation and reduced glucose oxidation observed in post-ischemic hearts perfused with high levels of palmitate substrate.


Assuntos
Lisina , Miocárdio , Ratos , Animais , Miocárdio/metabolismo , Lisina/metabolismo , Ratos Sprague-Dawley , Acetilação , Ácidos Graxos/metabolismo , Coração/fisiologia , Isquemia/metabolismo , Glicólise/fisiologia , Glucose/metabolismo , Oxirredução , Palmitatos/metabolismo
7.
Phytother Res ; 38(3): 1235-1244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38176954

RESUMO

Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.


Assuntos
Benzofuranos , Neoplasias da Próstata , Sirtuína 1 , Humanos , Masculino , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Transportador de Glucose Tipo 1/metabolismo , Glicólise/fisiologia , Neoplasias da Próstata/metabolismo , Sirtuína 1/metabolismo
8.
Cell Death Dis ; 15(1): 44, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218970

RESUMO

A hallmark of tumor cells, including bladder cancer (BLCA) cells, is metabolic reprogramming toward aerobic glycolysis (Warburg effect). The classical oncogene MYC, which is crucial in regulating glycolysis, is amplified and activated in BLCA. However, direct targeting of the c-Myc oncoprotein, which regulates glycolytic metabolism, presents great challenges and necessitates the discovery of a more clarified regulatory mechanism to develop selective targeted therapy. In this study, a siRNA library targeting deubiquitinases identified a candidate enzyme named USP43, which may regulate glycolytic metabolism and c-Myc transcriptional activity. Further investigation using functional assays and molecular studies revealed a USP43/c-Myc positive feedback loop that contributes to the progression of BLCA. Moreover, USP43 stabilizes c-Myc by deubiquitinating c-Myc at K148 and K289 primarily through deubiquitinase activity. Additionally, upregulation of USP43 protein in BLCA increased the chance of interaction with c-Myc and interfered with FBXW7 access and degradation of c-Myc. These findings suggest that USP43 is a potential therapeutic target for indirectly targeting glycolytic metabolism and the c-Myc oncoprotein consequently enhancing the efficacy of bladder cancer treatment.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Glicólise/fisiologia , RNA Interferente Pequeno/metabolismo , Neoplasias da Bexiga Urinária/genética , Linhagem Celular Tumoral , Proliferação de Células
9.
Artigo em Inglês | MEDLINE | ID: mdl-37898360

RESUMO

Broadcast-spawning marine mussels rely on high sperm motility for successful fertilization in the dynamic seawater environment. Mitochondria are typically considered the primary source of ATP generation via oxidative phosphorylation (OXPHOS); however, the ATP generation pathways of mussel sperm have not been fully characterized. To better understand the importance of both OXPHOS and glycolysis for mussel sperm function, we conducted experiments inhibiting these pathways in sperm from Mytilus edulis. Our results indicate that oligomycin, an inhibitor of the mitochondrial ATP synthase, immediately decreased sperm motility rate, velocity, and ATP content, while 2-deoxy-d-glucose, a glycolysis inhibitor, had no effect. The OXPHOS inhibitor rotenone also partially reduced sperm motility rate and velocity. Interestingly, no evidence was found for the inhibitors' effects on the content of energy-rich compounds (lipids, carbohydrates, and proteins) in the mussels' sperm, indicating only modest energy demand to fuel sperm motility. Based on these findings, we conclude that OXPHOS is the primary energy source for sperm motility in marine mussels. Our study sheds light on the intricacies of mussel sperm physiology and highlights the importance of understanding the energy requirements for successful fertilization in broadcast-spawning marine invertebrates.


Assuntos
Mytilus edulis , Mytilus , Masculino , Animais , Fosforilação Oxidativa , Motilidade dos Espermatozoides/fisiologia , Mytilus edulis/metabolismo , Sêmen/metabolismo , Glicólise/fisiologia , Espermatozoides , Trifosfato de Adenosina/metabolismo , Mytilus/metabolismo
10.
Traffic ; 25(1): e12926, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38084815

RESUMO

In neurons, fast axonal transport (FAT) of vesicles occurs over long distances and requires constant and local energy supply for molecular motors in the form of adenosine triphosphate (ATP). FAT is independent of mitochondrial metabolism. Indeed, the glycolytic machinery is present on vesicles and locally produces ATP, as well as nicotinamide adenine dinucleotide bonded with hydrogen (NADH) and pyruvate, using glucose as a substrate. It remains unclear whether pyruvate is transferred to mitochondria from the vesicles as well as how NADH is recycled into NAD+ on vesicles for continuous glycolysis activity. The optimization of a glycolytic activity test for subcellular compartments allowed the evaluation of the kinetics of vesicular glycolysis in the brain. This revealed that glycolysis is more efficient on vesicles than in the cytosol. We also found that lactate dehydrogenase (LDH) enzymatic activity is required for effective vesicular ATP production. Indeed, inhibition of LDH or the forced degradation of pyruvate inhibited ATP production from axonal vesicles. We found LDHA rather than the B isoform to be enriched on axonal vesicles suggesting a preferential transformation of pyruvate to lactate and a concomitant recycling of NADH into NAD+ on vesicles. Finally, we found that LDHA inhibition dramatically reduces the FAT of both dense-core vesicles and synaptic vesicle precursors in a reconstituted cortico-striatal circuit on-a-chip. Together, this shows that aerobic glycolysis is required to supply energy for vesicular transport in neurons, similar to the Warburg effect.


Assuntos
Glicólise , NAD , NAD/metabolismo , Glicólise/fisiologia , Axônios/metabolismo , Trifosfato de Adenosina/metabolismo , Piruvatos/metabolismo
11.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139462

RESUMO

Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glutamina/metabolismo , 60645 , Glicólise/fisiologia , Glioma/patologia , Transdução de Sinais , Apoptose , Proliferação de Células/fisiologia
12.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958775

RESUMO

The Warburg effect is the long-standing riddle of cancer biology. How does aerobic glycolysis, inefficient in producing ATP, confer a growth advantage to cancer cells? A new evaluation of a large set of literature findings covering the Warburg effect and its yeast counterpart, the Crabtree effect, led to an innovative working hypothesis presented here. It holds that enhanced glycolysis partially inactivates oxidative phosphorylation to induce functional rewiring of a set of TCA cycle enzymes to generate new non-canonical metabolic pathways that sustain faster growth rates. The hypothesis has been structured by constructing two metabolic maps, one for cancer metabolism and the other for the yeast Crabtree effect. New lines of investigation, suggested by these maps, are discussed as instrumental in leading toward a better understanding of cancer biology in order to allow the development of more efficient metabolism-targeted anticancer drugs.


Assuntos
Neoplasias , Saccharomyces cerevisiae , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Glicólise/fisiologia , Fosforilação Oxidativa , Proliferação de Células , Mitocôndrias/metabolismo
13.
Mol Cell ; 83(21): 3904-3920.e7, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37879334

RESUMO

Lactate has long been considered a cellular waste product. However, we found that as extracellular lactate accumulates, it also enters the mitochondrial matrix and stimulates mitochondrial electron transport chain (ETC) activity. The resulting increase in mitochondrial ATP synthesis suppresses glycolysis and increases the utilization of pyruvate and/or alternative respiratory substrates. The ability of lactate to increase oxidative phosphorylation does not depend on its metabolism. Both L- and D-lactate are effective at enhancing ETC activity and suppressing glycolysis. Furthermore, the selective induction of mitochondrial oxidative phosphorylation by unmetabolized D-lactate reversibly suppressed aerobic glycolysis in both cancer cell lines and proliferating primary cells in an ATP-dependent manner and enabled cell growth on respiratory-dependent bioenergetic substrates. In primary T cells, D-lactate enhanced cell proliferation and effector function. Together, these findings demonstrate that lactate is a critical regulator of the ability of mitochondrial oxidative phosphorylation to suppress glucose fermentation.


Assuntos
Metabolismo Energético , Ácido Láctico , Ácido Láctico/metabolismo , Transporte de Elétrons , Fosforilação Oxidativa , Glicólise/fisiologia , Trifosfato de Adenosina/metabolismo
14.
Nat Commun ; 14(1): 6328, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816864

RESUMO

Metabolic reprogramming is one of the hallmarks of tumorigenesis. Here, we show that nuclear myosin 1 (NM1) serves as a key regulator of cellular metabolism. NM1 directly affects mitochondrial oxidative phosphorylation (OXPHOS) by regulating mitochondrial transcription factors TFAM and PGC1α, and its deletion leads to underdeveloped mitochondria inner cristae and mitochondrial redistribution within the cell. These changes are associated with reduced OXPHOS gene expression, decreased mitochondrial DNA copy number, and deregulated mitochondrial dynamics, which lead to metabolic reprogramming of NM1 KO cells from OXPHOS to aerobic glycolysis.This, in turn, is associated with a metabolomic profile typical for cancer cells, namely increased amino acid-, fatty acid-, and sugar metabolism, and increased glucose uptake, lactate production, and intracellular acidity. NM1 KO cells form solid tumors in a mouse model, suggesting that the metabolic switch towards aerobic glycolysis provides a sufficient carcinogenic signal. We suggest that NM1 plays a role as a tumor suppressor and that NM1 depletion may contribute to the Warburg effect at the onset of tumorigenesis.


Assuntos
Glicólise , Fosforilação Oxidativa , Camundongos , Animais , Glicólise/fisiologia , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica/metabolismo , Miosinas/metabolismo
15.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188987, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37717858

RESUMO

Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Ácido Cítrico/metabolismo , Neoplasias/patologia , Glicólise/fisiologia , Ciclo do Ácido Cítrico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral
16.
Neurosci Biobehav Rev ; 153: 105373, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634556

RESUMO

In aerobic glycolysis, oxygen is abundant, and yet cells metabolize glucose without using it, decreasing their ATP per glucose yield by 15-fold. During task-based stimulation, aerobic glycolysis occurs in localized brain regions, presenting a puzzle: why produce ATP inefficiently when, all else being equal, evolution should favor the efficient use of metabolic resources? The answer is that all else is not equal. We propose that a tradeoff exists between efficient ATP production and the efficiency with which ATP is spent to transmit information. Aerobic glycolysis, despite yielding little ATP per glucose, may support neuronal signaling in thin (< 0.5 µm), information-efficient axons. We call this the efficiency tradeoff hypothesis. This tradeoff has potential implications for interpretations of task-related BOLD "activation" observed in fMRI. We hypothesize that BOLD "activation" may index local increases in aerobic glycolysis, which support signaling in thin axons carrying "bottom-up" information, or "prediction error"-i.e., the BIAPEM (BOLD increases approximate prediction error metabolism) hypothesis. Finally, we explore implications of our hypotheses for human brain evolution, social behavior, and mental disorders.


Assuntos
Trifosfato de Adenosina , Glicólise , Humanos , Glicólise/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glucose/metabolismo , Neuroimagem
17.
J Cell Biochem ; 124(8): 1067-1081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566665

RESUMO

Cellular metabolites are ancient molecules with pleiotropic implications in health and disease. Beyond their cognate roles, they have signaling functions as the ligands for specific receptors and the precursors for epigenetic or posttranslational modifications. Lactate has long been recognized as a metabolic waste and fatigue product mainly produced from glycolytic metabolism. Recent evidence however suggests lactate is an unique molecule with diverse signaling attributes in orchestration of numerous biological processes, including tumor immunity and neuronal survival. The copious metabolic and non-metabolic functions of lactate mediated by its bidirectional shuttle between cells or intracellular organelles lead to a phenotype called "lactormone." Importantly, the mechanisms of lactate signaling, via acting as a molecular sensor and a regulator of NAD+ metabolism and AMP-activated protein kinase signaling, and via the newly identified lactate-driven lactylation, have been discovered. Further, we include a brief discussion about the autocrine regulation of efferocytosis by lactate in Sertoli cells which favoraerobic glycolysis. By emphasizing a repertoire of the most recent discovered mechanisms of lactate signaling, this review will open tantalizing avenues for future investigations cracking the regulatory topology of lactate signaling covered in the veil of mystery.


Assuntos
Glicólise , Ácido Láctico , Masculino , Animais , Ácido Láctico/metabolismo , Glicólise/fisiologia , Transdução de Sinais
18.
Am J Physiol Endocrinol Metab ; 325(3): E207-E213, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467021

RESUMO

Individuals with insulin resistance and obesity display higher skeletal muscle production of nonoxidized glycolytic products (i.e., lactate), and lower complete mitochondrial substrate oxidation to CO2. These findings have also been observed in individuals without obesity and are associated with an increased risk for metabolic disease. The purpose of this study was to determine if substrate preference is evident at the earliest stage of life (birth) and to provide a clinical blood marker (lactate) that could be indicative of a predisposition for metabolic disease later. We used radiolabeled tracers to assess substrate oxidation and insulin sensitivity of myogenically differentiated mesenchymal stem cells (MSCs), a proxy of infant skeletal muscle tissue, derived from umbilical cords of full-term infants. We found that greater production of nonoxidized glycolytic products (lactate, pyruvate, alanine) is directly proportional to lower substrate oxidation and insulin sensitivity in MSCs. In addition, we found an inverse relationship between the ratio of complete glucose oxidation to CO2 and infant blood lactate at 1 mo of age. Collectively, considering that higher lactate was associated with lower MSC glucose oxidation and has been shown to be implicated with metabolic disease, it may be an early indicator of infant skeletal muscle phenotype.NEW & NOTEWORTHY In infant myogenically differentiated mesenchymal stem cells, greater production of nonoxidized glycolytic products was directly proportional to lower substrate oxidation and insulin resistance. Glucose oxidation was inversely correlated with infant blood lactate. This suggests that innate differences in infant substrate oxidation exist at birth and could be associated with the development of metabolic disease later in life. Clinical assessment of infant blood lactate could be used as an early indicator of skeletal muscle phenotype.


Assuntos
Resistência à Insulina , Células-Tronco Mesenquimais , Humanos , Dióxido de Carbono , Glicólise/fisiologia , Glucose/metabolismo , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Células-Tronco Mesenquimais/metabolismo , Insulina/metabolismo
19.
Front Immunol ; 14: 1189953, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377974

RESUMO

Immune therapies targeting the PD-1/PD-L1 pathway have been employed in the treatment of breast cancer, which requires aerobic glycolysis to sustain breast cancer cells growth. However, whether PD-L1 expression is regulated by glycolysis in breast cancer cells remains to be further elucidated. Here, we demonstrate that glycolytic enzyme hexokinase 2 (HK2) plays a crucial role in upregulating PD-L1 expression. Under high glucose conditions, HK2 acts as a protein kinase and phosphorylates IκBα at T291 in breast cancer cells, leading to the rapid degradation of IκBα and activation of NF-κB, which enters the nucleus and promotes PD-L1 expression. Immunohistochemistry staining of human breast cancer specimens and bioinformatics analyses reveals a positive correlation between HK2 and PD-L1 expression levels, which are inversely correlated with immune cell infiltration and survival time of breast cancer patients. These findings uncover the intrinsic and instrumental connection between aerobic glycolysis and PD-L1 expression-mediated tumor cell immune evasion and underscore the potential to target the protein kinase activity of HK2 for breast cancer treatment.


Assuntos
Neoplasias da Mama , Hexoquinase , Feminino , Humanos , Antígeno B7-H1/metabolismo , Glicólise/fisiologia , Hexoquinase/genética , Hexoquinase/metabolismo , Evasão da Resposta Imune , Inibidor de NF-kappaB alfa/metabolismo , Proteínas Quinases/metabolismo
20.
Sci Total Environ ; 894: 164998, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37353011

RESUMO

Hypobaric hypoxia is often associated with the plateau environment and can lead to altitude sickness or death. The underlying cause is a lack of oxygen, which limits energy metabolism and leads to a compensatory stress response. Although glycolysis is commonly accepted as the primary energy source during clinical hypoxia, our preliminary experiments suggest that hypobaric hypoxia may depress glycolysis. To provide a more comprehensive understanding of energy metabolism under short-term hypobaric hypoxia, we exposed mice to a simulated altitude of 5000 m for 6 or 12 h. After the exposure, we collected blood and liver tissues to quantify the substrates, enzymes, and metabolites involved in glycolysis, lactic acid metabolism, the tricarboxylic acid cycle (TCA), and fatty acid ß-oxidation. We also performed transcriptome and enzymatic activity analyses of the liver. Our results show that 6 h of hypoxic exposure significantly increased blood glucose, decreased lactic acid and triglyceride concentrations, and altered liver enzyme activities of mice exposed to hypoxia. The key enzymes in the glycolytic, TCA, and fatty acid ß-oxidation pathways were primarily affected. Specifically, the activities of key glycolytic enzymes, such as glucokinase, decreased significantly, while the activities of enzymes in the TCA cycle, such as isocitrate dehydrogenase, increased significantly. Lactate dehydrogenase, pyruvate carboxylase, and alanine aminotransferase were upregulated. These changes were partially restored when the exposure time was extended to 12 h, except for further downregulation of phosphofructokinase and glucokinase. This study demonstrates that acute high altitude hypoxia upregulated the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation, but downregulated glycolysis in the liver of mice. The results obtained in this study provide a theoretical framework for understanding the mechanisms underlying the pathogenesis of high-altitude sickness in humans. Additionally, these findings have potential implications for the development of prevention and treatment strategies for altitude sickness.


Assuntos
Doença da Altitude , Ciclo do Ácido Cítrico , Camundongos , Humanos , Animais , Doença da Altitude/metabolismo , Ácido Láctico , Aminoácidos/metabolismo , Regulação para Cima , Regulação para Baixo , Ácido Pirúvico , Glucoquinase/metabolismo , Glicólise/fisiologia , Hipóxia , Altitude , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...